Kantorovich type operator inequalities for Furuta inequality
نویسندگان
چکیده
منابع مشابه
Kantorovich type inequalities for ordered linear spaces
In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...
متن کاملAn application of grand Furuta inequality to a type of operator equation
The existence of positive semidefinite solutions of the operator equation n ∑ j=1 AXA = Y is investigated by applying grand Furuta inequality. If there exists positive semidefinite solutions of the operator equation, one of the special types of Y is obtained, which extends the related result before. Finally, an example is given based on our result.
متن کاملSeveral Matrix Euclidean Norm Inequalities Involving Kantorovich Inequality
where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A. It is a very useful tool to study the inefficiency of the ordinary least-squares estimate with one regressor in the linear model. Watson 1 introduced the ratio of the variance of the best linear unbiased estimator to the variance of the ordinary least-squares estimator. Such a lower bound of this ratio was provided by Kantorovich inequality 1....
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2007
ISSN: 1846-3886
DOI: 10.7153/oam-01-09